A boundary element method for homogenization of periodic structures
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
Location
Signature
Abstract
Homogenized coefficients of periodic structures are calculated via an auxiliary partial differential equation in the periodic cell. Typically, a volume finite element discretization is employed for the numerical solution. In this paper, we reformulate the problem as a boundary integral equation using Steklov-Poincare operators. The resulting boundary element method only discretizes the boundary of the periodic cell and the interface between the materials within the cell. We prove that the homogenized coefficients converge super-linearly with the mesh size, and we support the theory with examples in two and three dimensions.
Description
Subject(s)
boundary element method, homogenization
Citation
Mathematical Methods in the Applied Sciences. 2019.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry aplikované matematiky / Publications of Department of Applied Mathematics (470)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals