A boundary element method for homogenization of periodic structures

dc.contributor.authorLukáš, Dalibor
dc.contributor.authorOf, Günther
dc.contributor.authorZapletal, Jan
dc.contributor.authorBouchala, Jiří
dc.date.accessioned2020-01-14T07:18:39Z
dc.date.available2020-01-14T07:18:39Z
dc.date.issued2019
dc.description.abstractHomogenized coefficients of periodic structures are calculated via an auxiliary partial differential equation in the periodic cell. Typically, a volume finite element discretization is employed for the numerical solution. In this paper, we reformulate the problem as a boundary integral equation using Steklov-Poincare operators. The resulting boundary element method only discretizes the boundary of the periodic cell and the interface between the materials within the cell. We prove that the homogenized coefficients converge super-linearly with the mesh size, and we support the theory with examples in two and three dimensions.cs
dc.description.sourceWeb of Sciencecs
dc.identifier.citationMathematical Methods in the Applied Sciences. 2019.cs
dc.identifier.doi10.1002/mma.5882
dc.identifier.issn0170-4214
dc.identifier.issn1099-1476
dc.identifier.urihttp://hdl.handle.net/10084/139059
dc.identifier.wos000501531400001
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesMathematical Methods in the Applied Sciencescs
dc.relation.urihttps://doi.org/10.1002/mma.5882cs
dc.rights© 2019 John Wiley & Sons, Ltd.cs
dc.subjectboundary element methodcs
dc.subjecthomogenizationcs
dc.titleA boundary element method for homogenization of periodic structurescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
703 B
Format:
Item-specific license agreed upon to submission
Description: