On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: the R-linear convergence rate
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Taylor & Francis
Location
Signature
Abstract
The semi-smooth Newton method for solving discretized contact problems with Tresca friction in three-dimensional space is analysed. The slanting function is approximated to get symmetric inner linear systems. The primal-dual algorithm is transformed into the dual one so that the conjugate gradient method can be used. The R-linear convergence rate is proved for an inexact globally convergent variant of the method. Numerical experiments conclude the paper.
Description
Subject(s)
contact problem, Tresca friction, semi-smooth Newton method, conjugate gradient method, gradient projection, convergence rate
Citation
Optimization Methods and Software. 2020, vol. 35, issue 1, p. 65-86.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry matematiky a deskriptivní geometrie / Publications of Department of Mathematics and Descriptive Geometry (310)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry matematiky a deskriptivní geometrie / Publications of Department of Mathematics and Descriptive Geometry (310)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals