On the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: the R-linear convergence rate

dc.contributor.authorKučera, Radek
dc.contributor.authorMotyčková, Kristina
dc.contributor.authorMarkopoulos, Alexandros
dc.contributor.authorHaslinger, Jaroslav
dc.date.accessioned2019-12-16T07:32:48Z
dc.date.available2019-12-16T07:32:48Z
dc.date.issued2020
dc.description.abstractThe semi-smooth Newton method for solving discretized contact problems with Tresca friction in three-dimensional space is analysed. The slanting function is approximated to get symmetric inner linear systems. The primal-dual algorithm is transformed into the dual one so that the conjugate gradient method can be used. The R-linear convergence rate is proved for an inexact globally convergent variant of the method. Numerical experiments conclude the paper.cs
dc.description.firstpage65cs
dc.description.issue1cs
dc.description.lastpage86cs
dc.description.sourceWeb of Sciencecs
dc.description.volume35cs
dc.identifier.citationOptimization Methods and Software. 2020, vol. 35, issue 1, p. 65-86.cs
dc.identifier.doi10.1080/10556788.2018.1556659
dc.identifier.issn1055-6788
dc.identifier.issn1029-4937
dc.identifier.urihttp://hdl.handle.net/10084/139046
dc.identifier.wos000496996100004
dc.language.isoencs
dc.publisherTaylor & Franciscs
dc.relation.ispartofseriesOptimization Methods and Softwarecs
dc.relation.urihttps://doi.org/10.1080/10556788.2018.1556659cs
dc.subjectcontact problemcs
dc.subjectTresca frictioncs
dc.subjectsemi-smooth Newton methodcs
dc.subjectconjugate gradient methodcs
dc.subjectgradient projectioncs
dc.subjectconvergence ratecs
dc.titleOn the inexact symmetrized globally convergent semi-smooth Newton method for 3D contact problems with Tresca friction: the R-linear convergence ratecs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: