The neural network assisted land use regression
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
MDPI
License
Abstract
Land Use Regression (LUR) is one of the air quality assessment modelling techniques. Its advantages lie mainly in a much simpler mathematical apparatus, quicker and simpler calculations, and a possibility to incorporate more factors affecting pollutant concentration than standard dispersion models. The goal of the study was to perform the LUR model in the Polish-Czech-Slovakian Tritia region, to test two sets of pollution data input factors, i.e., factors based on emission data and pollution dispersion model results, to test regression via neural networks and compare it with standard linear regression. Both input datasets, emission data and pollution dispersion model results, provided a similar quality of results in the case when standard linear regression was used, the R-2 of the models was 0.639 and 0.652. Neural network regression provided a significantly higher quality of the models, their R-2 was 0.937 and 0.938 for the factors based on emission data and pollution dispersion model results respectively.
Description
Subject(s)
Citation
Atmosphere. 2021, vol. 12, issue 4, art. no. 452.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry geoinformatiky / Publications of Department of Geographic Information Systems (548)
Publikační činnost Katedry ochrany životního prostředí v průmyslu / Publication of Department of Environmental Protection in Industry (616)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry geoinformatiky / Publications of Department of Geographic Information Systems (548)
Publikační činnost Katedry ochrany životního prostředí v průmyslu / Publication of Department of Environmental Protection in Industry (616)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals