Towards new directions of data mining by evolutionary fuzzy rules and symbolic regression
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Elsevier
Location
Signature
Abstract
There are various techniques for data mining and data analysis. Among them, hybrid approaches combining two or more fundamental methods gain importance as the complexity and dimension of real world problems and data sets grows. Fuzzy sets and fuzzy logic can be used for efficient data classification by the means of fuzzy rules and classifiers. This study presents an application of genetic programming to the evolution of fuzzy rules based on the concept of extended Boolean queries. Fuzzy rules are used as symbolic classifiers learned from data and used to label data records and to predict the value of an output variable. An example of the application of such a hybrid evolutionary-fuzzy data mining approach to a real world problem is presented.
Description
Subject(s)
fuzzy rules, genetic programming, fuzzy information retrieval, data mining, application
Citation
Computers & Mathematics with Applications. 2013, vol. 66, issue 2, p. 190-200.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
Publikační činnost IT4Innovations / Publications of IT4Innovations (9600)
Publikační činnost Katedry informatiky / Publications of Department of Computer Science (460)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals