Towards new directions of data mining by evolutionary fuzzy rules and symbolic regression

dc.contributor.authorKrömer, Pavel
dc.contributor.authorOwais, Suhail Sami Jebour
dc.contributor.authorPlatoš, Jan
dc.contributor.authorSnášel, Václav
dc.date.accessioned2013-08-26T10:42:58Z
dc.date.available2013-08-26T10:42:58Z
dc.date.issued2013
dc.description.abstractThere are various techniques for data mining and data analysis. Among them, hybrid approaches combining two or more fundamental methods gain importance as the complexity and dimension of real world problems and data sets grows. Fuzzy sets and fuzzy logic can be used for efficient data classification by the means of fuzzy rules and classifiers. This study presents an application of genetic programming to the evolution of fuzzy rules based on the concept of extended Boolean queries. Fuzzy rules are used as symbolic classifiers learned from data and used to label data records and to predict the value of an output variable. An example of the application of such a hybrid evolutionary-fuzzy data mining approach to a real world problem is presented.cs
dc.description.firstpage190cs
dc.description.issue2cs
dc.description.lastpage200cs
dc.description.sourceWeb of Sciencecs
dc.description.volume66cs
dc.identifier.citationComputers & Mathematics with Applications. 2013, vol. 66, issue 2, p. 190-200.cs
dc.identifier.doi10.1016/j.camwa.2013.02.017
dc.identifier.issn0898-1221
dc.identifier.urihttp://hdl.handle.net/10084/100652
dc.identifier.wos000321941300010
dc.language.isoencs
dc.publisherElseviercs
dc.relation.ispartofseriesComputers & Mathematics with Applicationscs
dc.relation.urihttp://dx.doi.org/10.1016/j.camwa.2013.02.017cs
dc.subjectfuzzy rulescs
dc.subjectgenetic programmingcs
dc.subjectfuzzy information retrievalcs
dc.subjectdata miningcs
dc.subjectapplicationcs
dc.titleTowards new directions of data mining by evolutionary fuzzy rules and symbolic regressioncs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: