Generalization of the non-local derangement identity and applications to multiple zeta-type series

dc.contributor.authorGenčev, Marian
dc.date.accessioned2017-09-22T11:36:34Z
dc.date.available2017-09-22T11:36:34Z
dc.date.issued2017
dc.description.abstractThe goal of this paper is the study of a transformation concerning the general K-fold finite sums of the form Sigma (N >= n1 >= ... >= nK >= 1) 1/b(nK) . Pi (K-1)(J=1) 1/a(nj), where (K,N) is an element of N-2 and {a(n)}(n=1)(infinity), {b(n)}(n=1)(infinity) are appropriate real sequences. In the application part of our paper we apply the developed transformation to two special parametric multiple zeta-type series that generalize the well-know formula zeta(star)({2}(K), 1) = 2 zeta(2K + 1), K is an element of N. As a corollary of our parametric results, we also prove several sum formulas involving multiple zeta-star values.cs
dc.description.firstpage217cs
dc.description.issue2cs
dc.description.lastpage243cs
dc.description.sourceWeb of Sciencecs
dc.description.volume184cs
dc.identifier.citationMonatshefte für Mathematik. 2017, vol. 184, issue 2, p. 217-243.cs
dc.identifier.doi10.1007/s00605-016-0984-z
dc.identifier.issn0026-9255
dc.identifier.issn1436-5081
dc.identifier.urihttp://hdl.handle.net/10084/120230
dc.identifier.wos000410405200004
dc.language.isoencs
dc.publisherSpringercs
dc.relation.ispartofseriesMonatshefte für Mathematikcs
dc.relation.urihttps://doi.org/10.1007/s00605-016-0984-zcs
dc.rights© Springer-Verlag Wien 2016cs
dc.subjectmultiple zeta-star valuescs
dc.subjectparametric infinite seriescs
dc.subjectsum formulacs
dc.titleGeneralization of the non-local derangement identity and applications to multiple zeta-type seriescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs

Files

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: