Monadic GMV-algebras
Loading...
Downloads
3
Date issued
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Location
Není ve fondu ÚK
Signature
Abstract
Monadic MV-algebras are an algebraic model of the predicate calculus of the Łukasiewicz infinite valued logic in which only a single individual variable occurs. GMV-algebras are a non-commutative generalization of MV-algebras and are an algebraic counterpart of the non-commutative Łukasiewicz infinite valued logic. We introduce monadic GMV-algebras and describe their connections to certain couples of GMV-algebras and to left adjoint mappings of canonical embeddings of GMV-algebras. Furthermore, functional MGMV-algebras are studied and polyadic GMV-algebras are introduced and discussed.
Description
Subject(s)
MV-algebra, GMV-algebra, monadic MV-algebra, monadic GMV-algebra, quantifier, left adjoint mapping, polyadic GMV-algebra
Citation
Archive for Mathematical Logic. 2008, vol. 47, no. 3, p. 277-297.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry matematických metod v ekonomice / Publications of Department of Mathematical Methods in Economics (151)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry matematických metod v ekonomice / Publications of Department of Mathematical Methods in Economics (151)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals