Prediction of metal corrosion by neural networks
| dc.contributor.author | Jančíková, Zora | |
| dc.contributor.author | Zimný, Ondřej | |
| dc.contributor.author | Koštial, Pavol | |
| dc.date.accessioned | 2013-03-08T13:54:53Z | |
| dc.date.available | 2013-03-08T13:54:53Z | |
| dc.date.issued | 2013 | |
| dc.description.abstract | The contribution deals with the use of artifi cial neural networks for prediction of steel atmospheric corrosion. Atmospheric corrosion of metal materials exposed under atmospheric conditions depends on various factors such as local temperature, relative humidity, amount of precipitation, pH of rainfall, concentration of main pollutants and exposition time. As these factors are very complex, exact relation for mathematical description of atmospheric corrosion of various metals are not known so far. Classical analytical and mathematical functions are of limited use to describe this type of strongly non-linear system depending on various meteorological-chemical factors and interaction between them and on material parameters. Nowadays there is certain chance to predict a corrosion loss of materials by artifi cial neural networks. Neural networks are used primarily in real systems, which are characterized by high nonlinearity, considerable complexity and great diffi culty of their formal mathematical description. | cs |
| dc.description.firstpage | 379 | cs |
| dc.description.issue | 3 | cs |
| dc.description.lastpage | 381 | cs |
| dc.description.source | Web of Science | cs |
| dc.description.volume | 52 | cs |
| dc.format.extent | 1012074 bytes | cs |
| dc.format.mimetype | application/pdf | cs |
| dc.identifier.citation | Metalurgija. 2013, vol. 52, no. 3, p. 379-381. | cs |
| dc.identifier.issn | 0543-5846 | |
| dc.identifier.issn | 1334-2576 | |
| dc.identifier.location | Není ve fondu ÚK | cs |
| dc.identifier.uri | http://hdl.handle.net/10084/96188 | |
| dc.identifier.wos | 000313937100023 | |
| dc.language.iso | en | cs |
| dc.publisher | Hrvatsko Metalurško Društvo | cs |
| dc.relation.ispartofseries | Metalurgija | cs |
| dc.relation.uri | http://hrcak.srce.hr/file/141057 | cs |
| dc.rights.access | openAccess | |
| dc.subject | artifi cial neural networks | cs |
| dc.subject | atmosphericcorrosion | cs |
| dc.subject | prediction | cs |
| dc.subject | model | cs |
| dc.title | Prediction of metal corrosion by neural networks | cs |
| dc.type | article | cs |
| dc.type.status | Peer-reviewed | cs |
| dc.type.version | publishedVersion | cs |
Files
Original bundle
1 - 1 out of 1 results
Loading...
- Name:
- MET_52_3_379_381_Jancikova.pdf
- Size:
- 988.35 KB
- Format:
- Adobe Portable Document Format
- Description:
- publishedVersion
License bundle
1 - 1 out of 1 results
Loading...
- Name:
- license.txt
- Size:
- 1.71 KB
- Format:
- Item-specific license agreed upon to submission
- Description:
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry automatizace a počítačové techniky v průmyslu / Publications of Department of Automation and Computer Science in Metallurgy (638)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry automatizace a počítačové techniky v průmyslu / Publications of Department of Automation and Computer Science in Metallurgy (638)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals