Air pollution dispersion modelling using spatial analyses

dc.contributor.authorBitta, Jan
dc.contributor.authorPavlíková, Irena
dc.contributor.authorSvozilík, Vladislav
dc.contributor.authorJančík, Petr
dc.date.accessioned2019-02-08T12:38:38Z
dc.date.available2019-02-08T12:38:38Z
dc.date.issued2018
dc.description.abstractAir pollution dispersion modelling via spatial analyses (Land Use Regression-LUR) is an alternative approach to the standard air pollution dispersion modelling techniques in air quality assessment. Its advantages are mainly a much simpler mathematical apparatus, quicker and simpler calculations and a possibility to incorporate more factors affecting pollutant's concentration than standard dispersion models. The goal of the study was to model the PM10 particles dispersion via spatial analyses in the Czech-Polish border area of the Upper Silesian industrial agglomeration and compare the results with the results of the standard Gaussian dispersion model SYMOS'97. The results show that standard Gaussian model with the same data as the LUR model gives better results (determination coefficient 71% for Gaussian model to 48% for LUR model). When factors of the land cover were included in the LUR model, the LUR model results improved significantly (65% determination coefficient) to a level comparable with the Gaussian model. A hybrid approach of combining the Gaussian model with the LUR gives superior quality of results (86% determination coefficient).cs
dc.description.firstpageart. no. 489cs
dc.description.issue12cs
dc.description.sourceWeb of Sciencecs
dc.description.volume7cs
dc.identifier.citationISPRS International Journal of Geo-Information. 2018, vol. 7, issue 12, art. no. 489.cs
dc.identifier.doi10.3390/ijgi7120489
dc.identifier.issn2220-9964
dc.identifier.urihttp://hdl.handle.net/10084/134000
dc.identifier.wos000455392100037
dc.language.isoencs
dc.publisherMDPIcs
dc.relation.ispartofseriesISPRS International Journal of Geo-Informationcs
dc.relation.urihttp://doi.org/10.3390/ijgi7120489cs
dc.rights© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license.cs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by/4.0/cs
dc.subjectpollution dispersioncs
dc.subjectair qualitycs
dc.subjectland use regressioncs
dc.subjectSymos’97cs
dc.titleAir pollution dispersion modelling using spatial analysescs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
2220-9964-2018v7i12an489.pdf
Size:
17.8 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
1.71 KB
Format:
Item-specific license agreed upon to submission
Description: