Discovering electrochemistry with an electrochemistry-informed neural network (ECINN)
Loading...
Downloads
0
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Wiley
License
Abstract
Machine learning is increasingly integrated into chemistry research by guiding experimental procedures, correlating structure and function, interpreting large experimental datasets, to distill scientific insights that might be challenging with traditional methods. Such applications, however, largely focus on gaining insights via big data and/or big computation, while neglecting the valuable chemical prior knowledge dwelling in chemists' minds. In this paper, we introduce an Electrochemistry-Informed Neural Network (ECINN) by explicitly embedding electrochemistry priors including the Butler-Volmer (BV), Nernst and diffusion equations on the backbone of neural networks for multi-task discovery of electrochemistry parameters. We applied the ECINN to voltammetry experiments of Fe2+/Fe3+ ${{\rm F}{{\rm e}}<^>{2+}/{\rm F}{{\rm e}}<^>{3+}}$ and RuNH362+/RuNH363+ ${{\rm R}{\rm u}{\left({\rm N}{{\rm H}}_{3}\right)}_{6}<^>{2+{\rm \ }}/{\rm R}{\rm u}{\left({\rm N}{{\rm H}}_{3}\right)}_{6}<^>{3+{\rm \ }}}$ redox couples to discover electrode kinetics and mass transport parameters. Notably, ECINN seamlessly integrated mass transport with BV to analyze the entire voltammogram to infer transfer coefficients directly, so offering a new approach to Tafel analysis by outdating various mass transport correction methods. In addition, ECINN can help discover the nature of electron transfer and is shown to refute incorrect physics if imposed. This work encourages chemists to embed their domain knowledge into machine learning models to start a new paradigm of chemistry-informed machine learning for better accountability, interpretability, and generalization.
Description
Citation
Angewandte Chemie International Edition. 2024, vol. 63, issue 13.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry chemie a fyzikálně-chemických procesů / Publications of Department of Chemistry and Physico-Chemical Processes (651)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry chemie a fyzikálně-chemických procesů / Publications of Department of Chemistry and Physico-Chemical Processes (651)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals