Discovering electrochemistry with an electrochemistry-informed neural network (ECINN)

dc.contributor.authorChen, Haotian
dc.contributor.authorYang, Minjun
dc.contributor.authorSmetana, Bedřich
dc.contributor.authorNovák, Vlastimil
dc.contributor.authorMatějka, Vlastimil
dc.contributor.authorCompton, Richard G.
dc.date.accessioned2024-11-06T09:31:15Z
dc.date.available2024-11-06T09:31:15Z
dc.date.issued2024
dc.description.abstractMachine learning is increasingly integrated into chemistry research by guiding experimental procedures, correlating structure and function, interpreting large experimental datasets, to distill scientific insights that might be challenging with traditional methods. Such applications, however, largely focus on gaining insights via big data and/or big computation, while neglecting the valuable chemical prior knowledge dwelling in chemists' minds. In this paper, we introduce an Electrochemistry-Informed Neural Network (ECINN) by explicitly embedding electrochemistry priors including the Butler-Volmer (BV), Nernst and diffusion equations on the backbone of neural networks for multi-task discovery of electrochemistry parameters. We applied the ECINN to voltammetry experiments of Fe2+/Fe3+ ${{\rm F}{{\rm e}}<^>{2+}/{\rm F}{{\rm e}}<^>{3+}}$ and RuNH362+/RuNH363+ ${{\rm R}{\rm u}{\left({\rm N}{{\rm H}}_{3}\right)}_{6}<^>{2+{\rm \ }}/{\rm R}{\rm u}{\left({\rm N}{{\rm H}}_{3}\right)}_{6}<^>{3+{\rm \ }}}$ redox couples to discover electrode kinetics and mass transport parameters. Notably, ECINN seamlessly integrated mass transport with BV to analyze the entire voltammogram to infer transfer coefficients directly, so offering a new approach to Tafel analysis by outdating various mass transport correction methods. In addition, ECINN can help discover the nature of electron transfer and is shown to refute incorrect physics if imposed. This work encourages chemists to embed their domain knowledge into machine learning models to start a new paradigm of chemistry-informed machine learning for better accountability, interpretability, and generalization.cs
dc.description.issue13cs
dc.description.sourceWeb of Sciencecs
dc.description.volume63cs
dc.identifier.citationAngewandte Chemie International Edition. 2024, vol. 63, issue 13.cs
dc.identifier.doi10.1002/anie.202315937
dc.identifier.issn1433-7851
dc.identifier.issn1521-3773
dc.identifier.urihttp://hdl.handle.net/10084/155258
dc.identifier.wos001169465300001
dc.language.isoencs
dc.publisherWileycs
dc.relation.ispartofseriesAngewandte Chemie International Editioncs
dc.relation.urihttps://doi.org/10.1002/anie.202315937cs
dc.rights© 2024 The Authors. Angewandte Chemie International Edition published by Wiley-VCH GmbHcs
dc.rights.accessopenAccesscs
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/4.0/cs
dc.subjectcyclic voltammetrcs
dc.subjectelectrochemistrycs
dc.subjectmulti-task discoverycs
dc.subjectphysics-informed neural networkscs
dc.subjectTafel analysiscs
dc.titleDiscovering electrochemistry with an electrochemistry-informed neural network (ECINN)cs
dc.typearticlecs
dc.type.statusPeer-reviewedcs
dc.type.versionpublishedVersioncs

Files

Original bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
1433-7851-2024v63i13.pdf
Size:
1.29 MB
Format:
Adobe Portable Document Format
Description:

License bundle

Now showing 1 - 1 out of 1 results
Loading...
Thumbnail Image
Name:
license.txt
Size:
718 B
Format:
Item-specific license agreed upon to submission
Description: