A note on the transcendence of infinite products
Loading...
Downloads
3
Date issued
Journal Title
Journal ISSN
Volume Title
Publisher
Springer
Location
Není ve fondu ÚK
Signature
Abstract
The paper deals with several criteria for the transcendence of infinite products of the form ∏n=1∞[bnaan]/bnaan where α > 1 is a positive algebraic number having a conjugate α* such that α ≠ |α*| > 1, {a n } n=1 ∞ and {b n } n=1 ∞ are two sequences of positive integers with some specific conditions.
The proofs are based on the recent theorem of Corvaja and Zannier which relies on the Subspace Theorem (P.Corvaja, U.Zannier: On the rational approximation to the powers of an algebraic number: solution of two problems of Mahler and Mend`es France, Acta Math. 193, (2004), 175–191).
Description
This paper has been elaborated in the framework of the IT4Innovations Centre of Excellence project, reg. no. CZ.1.05/1.1.00/02.0070 supported by Operational Programme ‘Research and Development for Innovations’ funded by Structural Funds of the European Union and state budget of the Czech Republic and by grants no. ME09017, P201/12/2351 and MSM 6198898701.
Subject(s)
transcendence, infinite product, 11J81
Citation
Czechoslovak Mathematical Journal. 2012, vol. 62, issue 3, p. 613-623.
Item identifier
Collections
Publikační činnost VŠB-TUO ve Web of Science / Publications of VŠB-TUO in Web of Science
OpenAIRE
Publikační činnost Katedry matematických metod v ekonomice / Publications of Department of Mathematical Methods in Economics (151)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals
OpenAIRE
Publikační činnost Katedry matematických metod v ekonomice / Publications of Department of Mathematical Methods in Economics (151)
Články z časopisů s impakt faktorem / Articles from Impact Factor Journals